Leukocyte-derived matrix metalloproteinase-9 mediates blood-brain barrier breakdown and is proinflammatory after transient focal cerebral ischemia

Author:

Gidday Jeffrey M.,Gasche Yvan G.,Copin Jean-C.,Shah Aarti R.,Perez Ronald S.,Shapiro Steven D.,Chan Pak H.,Park T. S.

Abstract

Results of recent studies reveal vascular and neuroprotective effects of matrix metalloproteinase-9 (MMP-9) inhibition and MMP-9 gene deletion in experimental stroke. However, the cellular source of MMP-9 produced in the ischemic brain and the mechanistic basis of MMP-9-mediated brain injury require elucidation. In the present study, we used MMP-9−/−mice and chimeric knockouts lacking either MMP-9 in leukocytes or in resident brain cells to test the hypothesis that MMP-9 released from leukocytes recruited to the brain during postischemic reperfusion contributes to this injury phenotype. We also tested the hypothesis that MMP-9 promotes leukocyte recruitment to the ischemic brain and thus is proinflammatory. The extent of blood-brain barrier (BBB) breakdown, the neurological deficit, and the volume of infarction resulting from transient focal stroke were abrogated to a similar extent in MMP-9−/−mice and in chimeras lacking leukocytic MMP-9 but not in chimeras with MMP-9-containing leukocytes. Zymography and Western blot analysis from these chimeras confirmed that the elevated MMP-9 expression in the brain at 24 h of reperfusion is derived largely from leukocytes. MMP-9−/−mice exhibited a reduction in leukocyte-endothelial adherence and a reduction in the number of neutrophils plugging capillaries and infiltrating the ischemic brain during reperfusion; microvessel immunopositivity for collagen IV was also preserved in these animals. These latter results document proinflammatory actions of MMP-9 in the ischemic brain. Overall, our findings implicate leukocytes, most likely neutrophils, as a key cellular source of MMP-9, which, in turn, promotes leukocyte recruitment, causes BBB breakdown secondary to microvascular basal lamina proteolysis, and ultimately contributes to neuronal injury after transient focal stroke.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 400 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3