On the role of mechanosensitive mechanisms eliciting reactive hyperemia

Author:

Koller Akos1,Bagi Zsolt1

Affiliation:

1. Department of Pathophysiology, Semmelweis University, 1445-Budapest, Hungary; and Department of Physiology, New York Medical College, Valhalla, New York 10595

Abstract

We hypothesized that changes in hemodynamic forces such as pressure (P) and flow (F) contribute importantly to the development of reactive hyperemia. To exclude the effects of vivo factors, isolated rat skeletal muscle arterioles (∼130 μm) were utilized. We found that changes in P or P + F following occlusions elicited reactive dilations (RD). The peak of RD (up to ∼45 μm), but not the duration of RD, increased to changes in P (80 to 10, then back to 80 mmHg) as a function of the length of occlusions (30, 60, and 120 s). However, changes in P + F (80–10 -80 mmHg + 25–0-25 μl/min) increased both the peak and duration of RD (from ∼25 to 90 s) with longer occlusions. When only P changed, inhibition of nitric oxide synthesis or endothelium removal (E−) reduced only the peak of RD, whereas when P + F were changed, both the peak and duration of RD became reduced. Inhibition of stretch-activated cation channels by gadolinium reduced the peak but enhanced the duration of RD (both to P or P + F) that was unaffected by N G-nitro-l-arginine methyl ester (l-NAME) or by E−. When only P changed, inhibition of tyrosine kinases by genistein reduced peak RD but did not affect the RD duration. However, when P + F changed, genistein reduced both the peak and the duration of RD, additional l-NAME reduced the peak RD, but did not affect the duration of RD. Thus in isolated arterioles an RD resembling the characteristics of reactive hyperemia can be generated that is elicited by deformation, stretch, pressure, and flow/shear stress-sensitive mechanisms and is, in part, mediated by nitric oxide.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3