Affiliation:
1. From 1Department of Aeronautics and Astronautics and
2. Heart Science and Medical Devices Research Center, National Cheng Kung University, Tainan;
3. Harvard Medical School, Harvard University, Boston, Massachusetts
4. Department of Cardiovascular Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; and
Abstract
Wave intensity analysis (WIA) was used to delineate and maximize the efficacy of a newly developed para-aortic blood pump (PABP). The intra-aortic balloon pump (IABP) was employed as the comparison benchmark. Acute porcine experiments using eight pigs, randomly divided into IABP ( n = 4) and PABP ( n = 4) groups, were conducted to compare the characteristics of intra- and para-aortic counterpulsation. We measured pressure and velocity with probes installed in the left anterior descending coronary artery and aorta, during and without PABP assistance. Wave intensity for aortic and left coronary waves were derived from pressure and flow measurements with synchronization correction applied. To achieve maximized support efficacy, deflation timings ranging from 25 ms ahead of to 35 ms after the R-wave were tested. Similar to those associated with IABP counterpulsation, the PABP-generated backward-traveling waves predominantly drove aortic and coronary blood flows. However, in contrast with IABP counterpulsation, the nonocclusive nature of the PABP allowed systolic unloading to be delayed into early systole, which resulted in near elimination of coronary blood steal without diminution of systolic left ventricular ejection wave intensities. WIA can elucidate subtleties among different counterpulsatile support means with high sensitivity. Total accelerating wave intensity (TAWI), which was defined as the sum of the time integration of accelerated parts of the positive and negative wave intensities, was used to quantify counterpulsation efficacy. In general, the larger the TAWI gain, the better the counter-pulsatile support efficacy. However, when PABP deflation timings were delayed to after the R-wave, the TAWI was found to be inversely correlated with coronary perfusion. In this delayed deflation timing setting, greater wave cancellation occurred, which led to decreased TAWI but increased coronary perfusion attributed to blood regurgitation reduction.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献