Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart

Author:

Kapur Sunil,Wasserstrom J. Andrew,Kelly James E.,Kadish Alan H.,Aistrup Gary L.

Abstract

Cardiac cellular Ca2+ transient (CaT) alternans and electrocardiographic T-wave alternans (TWA) often develop in myocardial ischemia, but the mechanisms for this relationship have not been elucidated. Acidosis is a major component of ischemia, but there is no direct evidence linking acidosis-induced cellular CaT alternans to ischemia-induced CaT alternans and TWA in whole heart. We used laser-scanning confocal microscopy to measure intracellular Ca2+ (Cai2+) cycling in individual myocytes of fluo-4 AM-loaded rat hearts and simultaneously recorded pseudo-ECGs to investigate changes in CaTs and late-phase repolarization, respectively, during baseline and rapid pacing under control and either globally acidic or globally ischemic conditions. Acidosis (hypercapnia; pH 6.6) increased diastolic Cai2+ levels, prolonged CaT duration, and shifted to slower heart rates both the development of pacing-induced acidosis-induced CaT alternans (both concordant and discordant) and of repolarization alternans (RPA, a measure of TWA in rat ECGs). The magnitudes of these shifts were equivalent for both CaT alternans and RPA, suggesting a close association between them. Nearly identical results were found in low-flow global ischemia. Additionally, ischemic preconditioning reduced the increased propensity for CaT alternans and RPA development and was mimicked by preconditioning by acidosis alone. Our results demonstrate that global acidosis or ischemia modifies Cai2+ cycling in myocytes such that the diastolic Cai2+ rises and the cellular CaT duration is prolonged, causing spatially concordant as well as spatially discordant cellular CaT alternans to develop at slower heart rates than in controls. Since RPA also developed at slower heart rates, our results suggest that acidosis is a major contributor to CaT alternans, which underlies the proarrhythmic state induced by myocardial ischemia and therefore may play a role in its modulation and prevention.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3