Therapeutic effect of MG-132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: roles of Nrf2 and NF-κB

Author:

Wang Yuehui1,Sun Weixia23,Du Bing2,Miao Xiao13,Bai Yang23,Xin Ying34,Tan Yi35,Cui Wenpeng13,Liu Bin1,Cui Taixing56,Epstein Paul N.37,Fu Yaowen2,Cai Lu357

Affiliation:

1. The Second Hospital, Jilin University, Jilin, China;

2. The First Hospital, Jilin University, Jilin, China;

3. Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky;

4. Norman Bethune Medical College, Jilin University, Jilin, China;

5. Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical College, Wenzhou, China;

6. Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina; and

7. Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky

Abstract

MG-132, a proteasome inhibitor, can upregulate nuclear factor (NF) erythroid 2-related factor 2 (Nrf2)-mediated antioxidative function and downregulate NF-κB-mediated inflammation. The present study investigated whether through the above two mechanisms MG-132 could provide a therapeutic effect on diabetic cardiomyopathy in the OVE26 type 1 diabetic mouse model. OVE26 mice develop hyperglycemia at 2–3 wk after birth and exhibit albuminuria and cardiac dysfunction at 3 mo of age. Therefore, 3-mo-old OVE26 diabetic and age-matched control mice were intraperitoneally treated with MG-132 at 10 μg/kg daily for 3 mo. Before and after MG-132 treatment, cardiac function was measured by echocardiography, and cardiac tissues were then subjected to pathological and biochemical examination. Diabetic mice showed significant cardiac dysfunction, including increased left ventricular systolic diameter and wall thickness and decreased left ventricular ejection fraction with an increase of the heart weight-to-tibia length ratio. Diabetic hearts exhibited structural derangement and remodeling (fibrosis and hypertrophy). In diabetic mice, there was also increased systemic and cardiac oxidative damage and inflammation. All of these pathogenic changes were reversed by MG-132 treatment. MG-132 treatment significantly increased the cardiac expression of Nrf2 and its downstream antioxidant genes with a significant increase of total antioxidant capacity and also significantly decreased the expression of IκB and the nuclear accumulation and DNA-binding activity of NF-κB in the heart. These results suggest that MG-132 has a therapeutic effect on diabetic cardiomyopathy in OVE26 diabetic mice, possibly through the upregulation of Nrf2-dependent antioxidative function and downregulation of NF-κB-mediated inflammation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3