Pressure overload alters stress-strain properties of the developing chick heart

Author:

Miller Christine E.,Wong Chandra L.,Sedmera David

Abstract

As a first step in investigating a control mechanism regulating stress and/or strain in the embryonic heart, this study tests the hypothesis that passive mechanical properties of left ventricular (LV) embryonic myocardium change with chronically increased pressure during the chamber septation period. Conotruncal banding (CTB) created ventricular pressure overload in chicks from Hamburger-Hamilton (HH) stage 21 (HH21) to HH27, HH29, or HH31. LV sections were cyclically stretched while biaxial strains and force were measured. Wall architecture was assessed with scanning electron microscopy. In controls, porosity-adjusted stress-strain relations decreased significantly from HH27 to HH31. CTB at HH21 resulted in significantly stiffer stress-strain relations by HH27, with larger increases at HH29 and HH31, and nearly constant wall thickness. Strain patterns, hysteresis, and loading-curve convergence showed few differences after CTB. Trabecular extent decreased with age, but neither extent nor porosity changed significantly after CTB. The stiffened stress-strain relations and constant wall thickness suggest that mechanical load may play a regulatory role in this response.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3