Evidence for a membrane site of action for 14,15-EET on expression of aromatase in vascular smooth muscle

Author:

Snyder Gary D.1,Krishna U. Murali2,Falck J. R.2,Spector Arthur A.1

Affiliation:

1. Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242; and

2. Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, Texas 75235

Abstract

Epoxyeicosatrienoic acids (EETs) are synthesized in the endothelial cells of vascular tissues. They are released from the endothelial cells and produce relaxation of the smooth muscle cells by hyperpolarization. The present findings demonstrate that EETs also regulate aromatase activity in vascular smooth muscle cells. Exposure of cultured rat aortic smooth muscle cells to either 1 μM 14,15-EET or 1 μM 11,12-EET inhibits dibutyryl cAMP-induced aromatase activity by 80–100%. 11,12-Dihydroxyeicosatrienoic acid, the hydration product of 11,12-EET, has no effect on dibutyryl cAMP-induced vascular smooth muscle aromatase activity. In contrast to 14,15-EET, the N-methylsulfanilamide derivative of 14,15-EET (14,15-EET-SA) was neither metabolized nor incorporated into cell lipids, but it retained the ability to inhibit cAMP-induced aromatase activity. Furthermore, the 14,15-EET-SA inhibition of cAMP-induced aromatase activity persisted when the sulfanilamide derivative of 14,15-EET was covalently tethered to silica beads (average diameter, 0.5 μm), which restricted 14,15-EET-SA from entering the cell. These data are consistent with the presence of a receptor for EETs in the plasma membrane and support the hypothesis that the inhibition of aromatase by EETs is initiated by the interaction of EET with the putative plasma membrane receptor.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3