Author:
Campbell Kenneth S.,Holbrook Anastasia M.
Abstract
Isolated cardiac muscles generate tension more quickly at higher levels of Ca2+ activation. We investigated the molecular mechanisms underlying this effect in permeabilized rat myocardial preparations by measuring the rate of tension recovery following brief shortening/restretch perturbations. Separate series of experiments used Ca2+-activating solutions with different pH values (pH 6.75, 7.00, and 7.25) and different phosphate (Pi) concentrations (0, 2.5, and 5.0 mM added Pi) to modulate the recovery kinetics. Subsequent analysis showed that the rate of tension recovery correlated ( P < 0.001) with the relative residual tension, that is, the minimum tension measured immediately after restretch normalized to the steady-state isometric tension for the experimental condition. This new finding suggests that the rate at which cardiac muscles develop force increases with the proportion of cross bridges bound to the thin filament and is strong evidence of cooperative contractile activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献