Sex-specific effects of advanced maternal age on cardiovascular function in aged adult rat offspring

Author:

Shah Amin123,Cooke Christy-Lynn M.124,Kirschenman Raven D.123,Quon Anita L.123,Morton Jude S.123,Care Alison S.1235ORCID,Davidge Sandra T.1236

Affiliation:

1. Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada

2. Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada

3. Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada

4. Lois Hole Hospital for Women, Edmonton, Alberta, Canada

5. Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia

6. Department of Physiology, University of Alberta, Edmonton, Alberta, Canada

Abstract

Pregnancy at an advanced maternal age has an increased risk of complications for both the mothers and their offspring. We have previously shown that advanced maternal age in a rat model leads to poor fetal outcomes, maternal vascular dysfunction, and hypertension, concordant with findings in humans. Moreover, offspring from aged dams had sex-specific cardiovascular dysfunction in young adulthood. However, the detrimental impact of aging on the cardiovascular system of the offspring in this model is unknown. We hypothesized that offspring born to aged dams (9.5–10 mo old) would have impaired cardiovascular function at 12 mo of age. Echocardiographic data revealed signs of mild left ventricular diastolic dysfunction in only male offspring from aged dams [isovolumetric relaxation time: 34.27 ± 2.04 in the young dam group vs. 27.61 ± 0.99 ms in the aged dam group, P < 0.01; mitral annular velocity ratio ( E′/ A′): 1.08 ± 0.04 in the young dam group vs. 0.96 ± 0.02 in the aged dam group, P < 0.05]. We have previously shown that in young adulthood (4 mo of age), male, but not female, offspring born to aged dams had impaired recovery from ischemia-reperfusion injury. Aging did not alter the susceptibility of female offspring to ischemia-reperfusion injury. Interestingly, wire myography data revealed that male offspring from aged dams had enhanced vascular sensitivity to methacholine (negative log of EC50: 7.4 ± 0.08 in young dams vs. 7.9 ± 0.11 in aged dams, P = 0.007) due, in part, to increased prostaglandin-mediated vasodilation. Despite intact endothelium-dependent relaxation, female offspring from aged dams had elevated systolic blood pressure (125.3 ± 4.2 mmHg in young dams vs. 144.0 ± 6.9 mmHg in aged dams, P = 0.03). These data highlight sex-specific mechanisms underlying cardiovascular programming in offspring born to dams of advanced age. NEW & NOTEWORTHY Our study demonstrated that adult male and female offspring (12 mo old) born to aged dams had impaired cardiac diastolic function and increased blood pressure, respectively, signifying sex-specific differential cardiovascular effects of advanced maternal age.

Funder

Canadian Institute of Health Research

Molly Towell Perinatal Research Foundation (MTPRF)

Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3