Substrate size as a determinant of fibrillatory activity maintenance in a mathematical model of canine atrium

Author:

Zou Renqiang,Kneller James,Leon L. Joshua,Nattel Stanley

Abstract

Tissue size has been considered an important determinant of atrial fibrillation (AF), but recent work has questioned the critical size hypothesis. Here, we use a previously developed mathematical model of the two-dimensional canine atrium with realistic action potential, ionic, and conduction properties to address substrate size effects on the maintenance of fibrillatory activity. Cholinergic AF was simulated at different acetylcholine (ACh) concentrations ([ACh]) and distributions, with substrate area varied 11.1-fold. Automated phase singularity detection was used to facilitate the analysis of arrhythmic activity. The duration of activity induced by a single extrastimulus increased with increasing substrate dimensions. Two general mechanisms underlying activity were observed and were differentially affected by substrate size. For large mean [ACh], single primary rotors anchored in low-[ACh] zones maintained activity and substrate dimensions were not critical. At lower mean [ACh], extensive spiral wave meander prevented the emergence of single stable rotors. Prolonged activity was favored when substrate size permitted a sufficiently large number of simultaneous longer-lasting rotors that extinction of all was unlikely. Thus either single dominant rotor or multiple reentrant spiral generator mechanisms could maintain fibrillatory activity in this model and were differentially dependent on substrate size. These results speak to recent debates about the role in AF of single driver rotors versus multiple reentrant circuit mechanisms by suggesting that either may maintain fibrillatory atrial activity depending on atrial size and electrophysiological properties.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3