Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats

Author:

van Hees Hieronymus W. H.,van der Heijden Henricus F. M.,Ottenheijm Coen A. C.,Heunks Leo M. A.,Pigmans Cindy J. C.,Verheugt Freek W. A.,Brouwer Rene M. H. J.,Dekhuijzen P. N. Richard

Abstract

Diaphragm weakness commonly occurs in patients with congestive heart failure (CHF) and is an independent predictor of mortality. However, the pathophysiology of diaphragm weakness is poorly understood. We hypothesized that CHF induces diaphragm weakness at the single-fiber level by decreasing myosin content. In addition, we hypothesized that myofibrillar Ca2+ sensitivity is decreased and cross-bridge kinetics are slower in CHF diaphragm fibers. Finally, we hypothesized that loss of myosin in CHF diaphragm weakness is associated with increased proteolytic activities of caspase-3 and the proteasome. In skinned diaphragm single fibers of rats with CHF, induced by left coronary artery ligation, maximum force generation was reduced by ∼35% ( P < 0.01) compared with sham-operated animals for slow, 2a, and 2x fibers. In these CHF diaphragm fibers, myosin heavy chain content per half-sarcomere was concomitantly decreased ( P < 0.01). Ca2+ sensitivity of force generation and the rate constant of tension redevelopment were significantly reduced in CHF diaphragm fibers compared with sham-operated animals for all fiber types. The cleavage activity of the proteolytic enzyme caspase-3 and the proteasome were ∼30% ( P < 0.05) and ∼60% ( P < 0.05) higher, respectively, in diaphragm homogenates from CHF rats than from sham-operated rats. The present study demonstrates diaphragm weakness at the single-fiber level in a myocardial infarct model of CHF. The reduced maximal force generation can be explained by a loss of myosin content in all fiber types and is associated with activation of caspase-3 and the proteasome. Furthermore, CHF decreases myofibrillar Ca2+ sensitivity and slows cross-bridge cycling kinetics in diaphragm fibers.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3