Affiliation:
1. Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, Rhode Island;
2. Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
Abstract
We previously reported a transgenic rabbit model of long QT syndrome based on overexpression of pore mutants of repolarizing K+ channels KvLQT1 (LQT1) and HERG (LQT2).The transgenes in these rabbits eliminated the slow and fast components of the delayed rectifier K+ current ( IKs and IKr, respectively), as expected. Interestingly, the expressed pore mutants of HERG and KvLQT1 downregulated the remaining reciprocal repolarizing currents, IKs and IKr, without affecting the steady-state levels of the native polypeptides. Here, we sought to further explore the functional interactions between HERG and KvLQT1 in heterologous expression systems. Stable Chinese hamster ovary (CHO) cell lines expressing KvLQT1-minK or HERG were transiently transfected with expression vectors coding for mutant or wild-type HERG or KvLQT1. Transiently expressed pore mutant or wild-type KvLQT1 downregulated IKr in HERG stable CHO cell lines by 70% and 44%, respectively. Immunostaining revealed a severalfold lower surface expression of HERG, which could account for the reduction in IKr upon KvLQT1 expression. Deletion of the KvLQT1 NH2-terminus did not abolish the downregulation, suggesting that the interactions between the two channels are mediated through their COOH-termini. Similarly, transiently expressed HERG reduced IKs in KvLQT1-minK stable cells. Coimmunoprecipitations indicated a direct interaction between HERG and KvLQT1, and surface plasmon resonance analysis demonstrated a specific, physical association between the COOH-termini of KvLQT1 and HERG. Here, we present an in vitro model system consistent with the in vivo reciprocal downregulation of repolarizing currents seen in transgenic rabbit models, illustrating the importance of the transfection method when studying heterologous ion channel expression and trafficking. Moreover, our data suggest that interactions between KvLQT1 and HERG are mediated through COOH-termini.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献