Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery

Author:

Dourron Hector M.,Jacobson Gary M.,Park James L.,Liu Jianhua,Reddy Daniel J.,Scheel Maria L.,Pagano Patrick J.

Abstract

Vascular stretch induces NADPH oxidase-derived superoxide anion (O2), which has been implicated in hypertrophy and cell proliferation. We hypothesized that targeted delivery of an NADPH oxidase inhibitor to the adventitia would reduce stretch-induced vascular O2 and attenuate neointima formation. We designed a novel replication-deficient adenovirus containing a fibroblast-active promoter driving expression of NADPH oxidase inhibitory sequence gp91ds (Ad-PDGFβR-gp91ds/eGFP). 1) We characterized the specificity of this promoter using pPDGFβR-luciferase by showing induction of luciferase in cultured rat aortic fibroblasts but not in vascular smooth muscle cells. 2) Using RT-PCR, we observed expression of gp91ds and the reporter gene in fibroblasts after infection with Ad-PDGFβR-gp91ds/eGFP. 3) Using Ad-CMV-eGFP as a control, we delivered Ad-PDGFβR-gp91ds/eGFP to the adventitia of the rat common carotid artery (CCA). Immunohistochemistry confirmed localized delivery of the inhibitor to the adventitia. After CCAs were injured with an embolectomy catheter, we observed a significant increase in neointima-to-media area ratio in control CCAs, which was significantly attenuated in CCAs treated with the gp91ds-expressing virus. In a second group of rats, we detected a 10-fold increase in distension-stimulated O2, which was significantly reduced in CCAs infected with gp91ds-expressing virus. These data demonstrate that localized adventitial delivery of an NADPH oxidase inhibitor is effective in reducing overall vascular O2 and neointima formation, suggesting that adventitial NADPH oxidase plays a functional role in development of neointimal hyperplasia.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3