Author:
Dourron Hector M.,Jacobson Gary M.,Park James L.,Liu Jianhua,Reddy Daniel J.,Scheel Maria L.,Pagano Patrick J.
Abstract
Vascular stretch induces NADPH oxidase-derived superoxide anion (O2−), which has been implicated in hypertrophy and cell proliferation. We hypothesized that targeted delivery of an NADPH oxidase inhibitor to the adventitia would reduce stretch-induced vascular O2− and attenuate neointima formation. We designed a novel replication-deficient adenovirus containing a fibroblast-active promoter driving expression of NADPH oxidase inhibitory sequence gp91ds (Ad-PDGFβR-gp91ds/eGFP). 1) We characterized the specificity of this promoter using pPDGFβR-luciferase by showing induction of luciferase in cultured rat aortic fibroblasts but not in vascular smooth muscle cells. 2) Using RT-PCR, we observed expression of gp91ds and the reporter gene in fibroblasts after infection with Ad-PDGFβR-gp91ds/eGFP. 3) Using Ad-CMV-eGFP as a control, we delivered Ad-PDGFβR-gp91ds/eGFP to the adventitia of the rat common carotid artery (CCA). Immunohistochemistry confirmed localized delivery of the inhibitor to the adventitia. After CCAs were injured with an embolectomy catheter, we observed a significant increase in neointima-to-media area ratio in control CCAs, which was significantly attenuated in CCAs treated with the gp91ds-expressing virus. In a second group of rats, we detected a 10-fold increase in distension-stimulated O2−, which was significantly reduced in CCAs infected with gp91ds-expressing virus. These data demonstrate that localized adventitial delivery of an NADPH oxidase inhibitor is effective in reducing overall vascular O2− and neointima formation, suggesting that adventitial NADPH oxidase plays a functional role in development of neointimal hyperplasia.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献