Overexpression of eNOS in brain stem reduces enhanced sympathetic drive in mice with myocardial infarction

Author:

Sakai Koji,Hirooka Yoshitaka,Shigematsu Hideaki,Kishi Takuya,Ito Koji,Shimokawa Hiroaki,Takeshita Akira,Sunagawa Kenji

Abstract

Reduced nitric oxide (NO) in the brain might contribute to enhanced sympathetic drive in heart failure (HF). The aim of this study was to determine whether increased NO production induced by local overexpression of endothelial NO synthase (eNOS) in the nucleus tractus solitarius (NTS) of the brain stem reduces the enhanced sympathetic drive in mice with HF. Myocardial infarction (MI) was induced in mice by ligating the left coronary artery. MI mice exhibited left ventricular dilatation and a reduced left ventricular ejection fraction. Urinary norepinephrine excretion in MI mice was greater than that in sham-operated mice, indicating that sympathetic drive was enhanced in this model. Thus this model has features that are typical of HF. Western blot analysis and immunohistochemical staining for neuronal NOS (nNOS) indicated that nNOS protein expression was significantly reduced in the brain stem of MI mice. MI mice had a significantly smaller increase in blood pressure evoked by intracisternal injection of NG-monomethyl-l-arginine than sham-operated mice. Adenoviral vectors encoding either eNOS (AdeNOS) or β-galactosidase (Adβgal) were transfected into the NTS to examine the effect of increased NO production in the NTS on the enhanced sympathetic drive in HF. After the gene transfer, urinary norepinephrine excretion was reduced in AdeNOS-transfected MI mice but not in Adβgal-transfected MI mice. These results indicate that nNOS expression in the brain stem, especially in the NTS, is reduced in the MI mouse model of HF, and increased NO production induced by overexpression of eNOS in the NTS attenuates the enhanced sympathetic drive in this model.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3