Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange

Author:

Sakurai Terumi,Terui Naohito

Abstract

The spontaneous and rhythmic constriction of peripheral arterioles, which is not associated with the cardiac or respiratory cycles, is called vasomotion. Vasomotion is observed in various tissues of various species, but the physiological role of vasomotion has not been clarified because of the difficulty in controlling the appearance of vasomotion in in vivo preparations. We developed a method of controlling vasomotion in in vivo experiments. The electrical stimulation of the cervical sympathetic nerve could reproducibly evoke vasomotion in rabbit ear skin. The frequencies of the evoked vasomotion were 0.04–0.07 Hz, which corresponded to spontaneously occurring vasomotion that has been reported before. Vasomotion was always evoked between 25 and 35°C. At lower than 17°C or higher than 37°C, vasomotion was not evoked. With the use of this method of evoking vasomotion in vivo, the role of vasomotion in tissue perfusion was examined. A tracer (Cr-EDTA) was injected into the ear tissue, and tracer fading was then measured by using a camera. The rates of fading (clearance) of the tracer with vasomotion were significantly greater (1.7 to 8.1 times) than those without vasomotion. These results provided evidence that vasomotion enhanced tissue perfusion.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference33 articles.

1. Asano M and Branemark PI. Microphotoelectric plethysmography using a titanium chamber in man. Adv Microcirc 4: 131–160, 1972.

2. Dynamic Coherence Analysis of Vasomotion and Flow Motion in Skeletal Muscle Microcirculation

3. Borgstrom P, Schmidt JA, Bruttig SP, Intaglietta M, and Arfors KE. Slow-wave flowmotion in rabbit skeletal muscle after acute fixed-volume hemorrhage. Circ Shock 36: 57–61, 1992.

4. Vasomotion frequency and amplitude related to intraluminal pressure and temperature in the wing of the intact, unanesthetized bat

5. Spontaneous vasomotion in hamster cheek pouch arterioles in varying experimental conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3