Impact of site-specific phosphorylation of protein kinase A sites Ser23and Ser24of cardiac troponin I in human cardiomyocytes

Author:

Wijnker Paul J. M.1,Foster D. Brian2,Tsao Allison L.2,Frazier Aisha H.2,dos Remedios Cristobal G.3,Murphy Anne M.2,Stienen Ger J. M.14,van der Velden Jolanda1

Affiliation:

1. Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands;

2. Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland;

3. Muscle Research Unit, Institute for Biomedical Research, The University of Sydney, Sydney, New South Wales, Australia; and

4. Department of Physics and Astronomy, VU University Medical Center, Amsterdam, The Netherlands

Abstract

PKA-mediated phosphorylation of contractile proteins upon β-adrenergic stimulation plays an important role in the regulation of cardiac performance. Phosphorylation of the PKA sites (Ser23/Ser24) of cardiac troponin (cTn)I results in a decrease in myofilament Ca2+sensitivity and an increase in the rate of relaxation. However, the relation between the level of phosphorylation of the sites and the functional effects in the human myocardium is unknown. Therefore, site-directed mutagenesis was used to study the effects of phosphorylation at Ser23and Ser24of cTnI on myofilament function in human cardiac tissue. Serines were replaced by aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. cTnI-DD mimics both sites phosphorylated, cTnI-AD mimics Ser23unphosphorylated and Ser24phosphorylated, cTnI-DA mimics Ser23phosphorylated and Ser24unphosphorylated, and cTnI-AA mimics both sites unphosphorylated. Force development was measured at various Ca2+concentrations in permeabilized cardiomyocytes in which the endogenous troponin complex was exchanged with these recombinant human troponin complexes. In donor cardiomyocytes, myofilament Ca2+sensitivity (pCa50) was significantly lower in cTnI-DD (pCa50: 5.39 ± 0.01) compared with cTnI-AA (pCa50: 5.50 ± 0.01), cTnI-AD (pCa50: 5.48 ± 0.01), and cTnI-DA (pCa50: 5.51 ± 0.01) at ∼70% cTn exchange. No effects were observed on the rate of tension redevelopment. In cardiomyocytes from idiopathic dilated cardiomyopathic tissue, a linear decline in pCa50with cTnI-DD content was observed, saturating at ∼55% bisphosphorylation. Our data suggest that in the human myocardium, phosphorylation of both PKA sites on cTnI is required to reduce myofilament Ca2+sensitivity, which is maximal at ∼55% bisphosphorylated cTnI. The implications for in vivo cardiac function in health and disease are detailed in the discussion in this article.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3