Author:
Cohen Risa M.,Foell Jason D.,Balijepalli Ravi C.,Shah Vaibhavi,Hell Johannes W.,Kamp Timothy J.
Abstract
Recent studies have identified a growing diversity of splice variants of auxiliary Ca2+channel Cavβ subunits. The Cavβ1disoform encodes a putative protein composed of the amino-terminal half of the full-length Cavβ1isoform and thus lacks the known high-affinity binding site that recognizes the Ca2+channel α1-subunit, the α-binding pocket. The present study investigated whether the Cavβ1dsubunit is expressed at the protein level in heart, and whether it exhibits any of the functional properties typical of full-length Cavβ subunits. On Western blots, an antibody directed against the unique carboxyl terminus of Cavβ1didentified a protein of the predicted molecular mass of 23 kDa from canine and human hearts. Immunocytochemistry and surface-membrane biotinylation experiments in transfected HEK-293 cells revealed that the full-length Cavβ1bsubunit promoted membrane trafficking of the pore-forming α1C(Cav1.2)-subunit to the surface membrane, whereas the Cavβ1dsubunit did not. Whole cell patch-clamp analysis of transfected HEK-293 cells demonstrated no effect of coexpression of the Cavβ1dwith the α1C-subunit compared with the 15-fold larger currents and leftward shift in voltage-dependent activation induced by full-length Cavβ1bcoexpression. In contrast, cell-attached patch single-channel studies demonstrated that coexpression of either Cavβ1bor Cavβ1dsignificantly increased mean open probability four- to fivefold relative to the α1C-channels alone, but only Cavβ1bcoexpression increased the number of channels observed per patch. In conclusion, the Cavβ1disoform is expressed in heart and can modulate the gating of L-type Ca2+channels, but it does not promote membrane trafficking of the channel complex.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献