Cardioprotection initiated by reactive oxygen species is dependent on activation of PKCε

Author:

Kabir Alamgir M. N.,Clark James E.,Tanno Masaya,Cao Xuebin,Hothersall John S.,Dashnyam Semjidmaa,Gorog Diana A.,Bellahcene Mohamed,Shattock Michael J.,Marber Michael S.

Abstract

To examine whether cardioprotection initiated by reactive oxygen species (ROS) is dependent on protein kinase Cε (PKCε), isolated buffer-perfused mouse hearts were randomized to four groups: 1) antimycin A (AA) (0.1 μg/ml) for 3 min followed by 10 min washout and then 30 min global ischemia (I) and 2 h reperfusion (R); 2) controls of I/R alone; 3) AA bracketed with 13 min of N-2-mercaptopropionyl- glycine (MPG) followed by I/R; and 4) MPG (200 μM) alone, followed by I/R. Isolated adult rat ventricular myocytes (ARVM) were exposed to AA (0.1 μg/ml), and lucigenin was used to measure ROS production. Murine hearts and ARVM were exposed to AA (0.1 μg/ml) with or without MPG, and PKCε translocation was measured by cell fractionation and subsequent Western blot analysis. Finally, the dependence of AA protection on PKCε was determined by the use of knockout mice (−/−) lacking PKCε. AA exposure caused ROS production, which was abolished by the mitochondrial uncoupler mesoxalonitrile 4-trifluoromethoxyphenylhydrazone. In addition, AA significantly reduced the percent infarction-left ventricular volume compared with control I/R (26 ± 4 vs. 43 ± 2%; P < 0.05). Bracketing AA with MPG caused a loss of protection (52 ± 7 vs. 26 ± 4%; P < 0.05). AA caused PKCε translocation only in the absence of MPG, and protection was lost on the pkcε−/− background (38 ± 3 vs. 15 ± 4%; P < 0.001). AA causes ROS production, on which protection and PKCε translocation depend. In addition, protection is absent in PKCε null hearts. Our results imply that, in common with ischemic preconditioning, PKCε is crucial to ROS-mediated protection.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3