Effects of electroporation on optically recorded transmembrane potential responses to high-intensity electrical shocks

Author:

Nikolski V. P.,Sambelashvili A. T.,Krinsky V. I.,Efimov I. R.

Abstract

The outcome of defibrillation shocks is determined by the nonlinear transmembrane potential (Δ Vm) response induced by a strong external electrical field in cardiac cells. We investigated the contribution of electroporation to Δ Vm transients during high-intensity shocks using optical mapping. Rectangular and ramp stimuli (10–20 ms) of different polarities and intensities were applied to the rabbit heart epicardium during the plateau phase of the action potential (AP). Δ Vm were optically recorded under a custom 6-mm-diameter electrode using a voltage-sensitive dye. A gradual increase of cathodal and well as anodal stimulus strength was associated with 1) saturation and subsequent reduction of Δ Vm; 2) postshock diastolic resting potential (RP) elevation; and 3) postshock AP amplitude (APA) reduction. Weak stimuli induced a monotonic Δ Vm response and did not affect the RP level. Strong shocks produced a nonmonotonic Δ Vm response and caused RP elevation and a reduction of postshock APA. The maximum positive and maximum negative Δ Vm were recorded at 170 ± 20 mA/cm2 for cathodal stimuli and at 240 ± 30 mA/cm2 for anodal stimuli, respectively (means ± SE, n = 8, P = 0.003). RP elevation reached 10% of APA at a stimulus strength of 320 ± 40 mA/cm2 for both polarities. Strong ramp stimuli (20 ms, 600 mA/cm2) induced a nonmonotonic Δ Vm response, reaching the same largest positive and negative values as for rectangular shocks. The transition from monotonic to nonmonotonic morphology correlates with RP elevation and APA reduction, which is consistent with cell membrane electroporation. Strong shocks resulted in propidium iodide uptake, suggesting sarcolemma electroporation. In conclusion, electroporation is a likely explanation of the saturation and nonmonotonic nature of cellular responses reported for strong electric stimuli.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3