Crystalloid and perfluorochemical perfusates in an isolated working rabbit heart preparation

Author:

Chemnitius J. M.,Burger W.,Bing R. J.

Abstract

Krebs-Henseleit buffer (KH) and a perfluorochemical (FC-43) were compared as perfusates in an isolated working rabbit heart preparation. Both perfusates were oxygenated in an identical manner using an infant bubble oxygenator. After 60 min of perfusion, no difference could be detected in the ratio of wet to dry heart weight between KH- and FC-43-perfused hearts (KH, 6.25 +/- 0.3; FC-43, 5.99 +/- 0.20). Left ventricular systolic pressure, maximal rate of left ventricular pressure rise, mean aortic systolic pressure, cardiac output, aortic flow, left ventricular power, and myocardial O2 consumption (MVO2) were significantly higher in FC-43-perfused hearts throughout the time of perfusion. However, there were no differences in resistance to cardiac output and heart rate. In KH- and FC-43-perfused hearts, MVO2 and left ventricular power were closely correlated (KH, r = 0.793; FC-43, r = 0.831). Significantly higher coronary flow of KH-perfused hearts could be attributed to the lower viscosity of KH (1.05 Pa . s) compared with FC-43 (1.91 Pa . s). Increased O2 extraction during KH perfusion could not compensate for low O2-carrying capacity of KH buffer (345 compared with 705 nmol O2 X ml-1 in FC-43 emulsion). A postischemic increase of coronary flow was observed only in FC-43-perfused hearts (28%). These results demonstrate a different response of perfused heart preparations to FC-43 and KH buffer.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research;American Journal of Physiology-Heart and Circulatory Physiology;2021-12-01

2. Energy metabolism design of the striated muscle cell;Physiological Reviews;2021-10-01

3. Paradoxical arteriole constriction compromises cytosolic and mitochondrial oxygen delivery in the isolated saline-perfused heart;American Journal of Physiology-Heart and Circulatory Physiology;2018-12-01

4. The heart in lack of oxygen? A revisited method to improve cardiac performance ex vivo;American Journal of Physiology-Heart and Circulatory Physiology;2018-04-01

5. Cardiac performance is limited by oxygen delivery to the mitochondria in the crystalloid-perfused working heart;American Journal of Physiology-Heart and Circulatory Physiology;2018-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3