Author:
Wolin M. S.,Belloni F. L.
Abstract
Xanthine oxidase-derived oxygen metabolites caused a selective loss of norepinephrine-induced contractile tension in rings and helical strips from rabbit aorta. Phenylephrine-induced tension was not affected. The relaxation was selectively and completely blocked by superoxide dismutase but not by catalase. Isoproterenol-induced relaxation was also reversed by xanthine oxidase-derived oxygen metabolites. These observations are consistent with the chemical reaction of superoxide anion with catecholamines and suggest that the reaction may have significance at physiological concentrations of norepinephrine. The time course of the effects of superoxide generation on contractile tension was consistent with the properties of the chemical reaction (measured spectrophotometrically) and with the dependence of tone on norepinephrine concentration. These results indicate that superoxide anion, in situations at which submicromolar concentrations of this reduced oxygen metabolite are present, will selectively oxidize catecholamines, which may attenuate local adrenergic regulation.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献