Cardiac mechanics and energetics: chemomechanical transduction in cardiac muscle

Author:

Gibbs C. L.,Chapman J. B.

Abstract

When a heart is in a stable inotropic state, the end-systolic pressure-volume points of each work cycle fall on a straight line regardless of the magnitude of the afterload or the initial end-diastolic volume: cardiac O2 consumption (MVO2) per beat is linearly correlated with ventricular systolic pressure-volume area (PVA), defined in terms of stroke work and potential energy components. Moreover, if the basal and activation components of the cardiac energy cycle are subtracted, hearts operate at a constant PVA/MVO2 efficiency. The present review examines the energetic implications of these results for current muscle models, discussing the energetic background of earlier skeletal muscle viscoelastic models and examining differences between the vectorial outputs of ion transport ATPases and myofibrillar ATPases. The PVA data point to a unique stoichiometric relationship between myocardial energy flux and vectorial output, and it is shown that most existing myocardial O2 consumption data can be reconciled with the PVA concept. However, most muscle models would not predict a linear stoichiometric relation between energy flux and pressure-volume potential energy. We pose the question as to whether there is an undiscovered autoregulatory process at work in muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermodynamic inconsistency disproves the Suga-Sagawa theory of cardiac energetics;Progress in Biophysics and Molecular Biology;2021-09

2. Inhibition of focal adhesion kinase increases myofibril viscosity in cardiac myocytes;Cytoskeleton;2020-09

3. Regional myocardial mechanics: there’s more than meets the strain;European Heart Journal - Cardiovascular Imaging;2020-04-13

4. Models of the Heart;The Heart and Circulation;2019-11-28

5. Microtubules Provide a Viscoelastic Resistance to Myocyte Motion;Biophysical Journal;2018-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3