Affiliation:
1. Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, China; and
2. Institute of Molecular Medicine, Peking University, Peking, China
Abstract
Emerging evidence suggests a potential role of neutrophil extracellular traps (NETs) in linking sterile inflammation and thrombosis. We hypothesized that NETs would be induced during myocardial ischemia-reperfusion (I/R), and NET-mediated microthrombosis may contribute to myocardial “no-reflow”. Male Wistar rats were randomly divided into I/R control, DNase (DNase I, 20 μg/rat), recombinant tissue-type plasminogen activator (rt-PA, 420 μg/rat), DNase + rt-PA, and sham control groups after 45-min myocardial ischemia. In situ NET formation, the anatomic “no re-flow” area, and infarct size were evaluated immediately after 3 h of reperfusion. Long-term left ventricular (LV) functional and histological analyses were performed 45 days after operation. Compared with the I/R controls, the DNase + rt-PA group exhibited reduced NET density [8.38 ± 1.98 vs. 26.86 ± 3.07 (per 200 × field), P < 0.001] and “no-flow” area (15.22 ± 0.06 vs. 34.6 ± 0.05%, P < 0.05) in the ischemic region, as well as reduced infarct size (38.39 ± 0.05 vs. 71.00 ± 0.03%, P < 0.001). Additionally, compared with the I/R controls, DNase + rt-PA treatment significantly ameliorated I/R injury-induced LV remodeling (LV ejection fraction: 64.22 ± 3.37 vs. 33.81 ± 2.98%, P < 0.05; LV maximal slope of the LV systolic pressure increment: 3,785 ± 216 vs. 2,596 ± 299 mmHg/s, P < 0.05). The beneficial effect was not observed in rats treated with DNase I or rt-PA alone. Our study provides evidence for the existence of NETs in I/R-challenged myocardium and confirms the long-term benefit of a novel DNase-based reperfusion strategy (DNase I + rt-PA), which might be a promising option for the treatment of myocardial I/R injury and coronary no-reflow.
Funder
National Natural Science Foundation of China (NSFC)
Tianjin Municipal Science and Technology Committee
Logistics University of Chinese People's Armed Police Forces
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
189 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献