Augmentation of moxonidine-induced increase in ANP release by atrial hypertrophy

Author:

Cao Chunhua,Kang Chang Won,Kim Sung Zoo,Kim Suhn Hee

Abstract

Imidazoline receptors are divided into I1 and I2 subtypes. I1-imidazoline receptors are distributed in the heart and are upregulated during hypertension or heart failure. The aim of this study was to define the possible role of I1-imidazoline receptors in the regulation of atrial natriuretic peptide (ANP) release in hypertrophied atria. Experiments were performed on isolated, perfused, hypertrophied atria from remnant-kidney hypertensive rats. The relatively selective I1-imidazoline receptor agonist moxonidine caused a decrease in pulse pressure. Moxonidine (3, 10, and 30 μmol/l) also caused dose-dependent increases in ANP secretion, but clonidine (an α2-adrenoceptor agonist) did not. Pretreatment with efaroxan (a selective I1-imidazoline receptor antagonist) or rauwolscine (a selective α2-adrenoceptor antagonist) inhibited the moxonidine-induced increases in ANP secretion and interstitial ANP concentration and decrease in pulse pressure. However, the antagonistic effect of efaroxan on moxonidine-induced ANP secretion was greater than that of rauwolscine. Neither efaroxan nor rauwolscine alone has any significant effects on ANP secretion and pulse pressure. In hypertrophied atria, the moxonidine-induced increase in ANP secretion and decrease in pulse pressure were markedly augmented compared with nonhypertrophied atria, and the relative change in ANP secretion by moxonidine was positively correlated to atrial hypertrophy. The accentuation by moxonidine of ANP secretion was attenuated by efaroxan but not by rauwolscine. These results show that moxonidine increases ANP release through (preferentially) the activation of atrial I1-imidazoline receptors and also via different mechanisms from clonidine, and this effect is augmented in hypertrophied atria. Therefore, we suggest that cardiac I1-imidazoline receptors play an important role in the regulation of blood pressure.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3