Characteristics and actions of NAD(P)H oxidase on the sarcoplasmic reticulum of coronary artery smooth muscle

Author:

Yi Xiu-Yu,Li Victoria X.,Zhang Fan,Yi Fan,Matson Daniel R.,Jiang Ming Tao,Li Pin-Lan

Abstract

It has been reported that nonmitochondrial NAD(P)H oxidases make an important contribution to intracellular O2· in vascular tissues and, thereby, the regulation of vascular function. Topological analyses have suggested that a well-known membrane-associated NAD(P)H oxidase may not release O2· into the cytosol. It is imperative to clarify the source of intracellular O2· associated with this enzyme and its physiological significance in vascular cells. The present study hypothesized that an NAD(P)H oxidase on the sarcoplasmic reticulum (SR) in coronary artery smooth muscle (CASM) regulates SR ryanodine receptor (RyR) activity by producing O2· locally. Western blot analysis was used to detect NAD(P)H oxidase subunits in purified SR from CASM. Fluorescent spectrometric analysis demonstrated that incubation of SR with NADH time dependently produced O2·, which could be substantially blocked by the specific NAD(P)H oxidase inhibitors diphenylene iodonium and apocynin and by SOD or its mimetic tiron. This SR NAD(P)H oxidase activity was also confirmed by HPLC analysis of conversion of NADH to NAD+. In experiments of lipid bilayer channel reconstitution, addition of NADH to the cis solution significantly increased the activity of RyR/Ca2+release channels from these SR preparations from CASM, with a maximal increase in channel open probability from 0.0044 ± 0.0005 to 0.0213 ± 0.0018; this effect of NADH was markedly blocked in the presence of SOD or tiron or the NAD(P)H oxidase inhibitors diphenylene iodonium, N-vanillylnonanamide, and apocynin. These results suggest that a local NAD(P)H oxidase system on SR from CASM regulates RyR/Ca2+channel activity and Ca2+release from SR by producing O2·.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3