Rapid cooling contractures as an index of sarcoplasmic reticulum calcium content in rabbit ventricular myocytes

Author:

Hryshko L. V.1,Stiffel V.1,Bers D. M.1

Affiliation:

1. Division of Biomedical Sciences, University of California, Riverside92521-0121.

Abstract

Rapid cooling contractures (RCCs) were used to assess changes in sarcoplasmic reticulum (SR) Ca content in both isolated rabbit ventricular myocytes and multicellular preparations. The main difference observed between these preparations was the magnitude of RCCs relative to twitches, apparently due to differences in measured parameters, i.e., unloaded shortening vs. isometric tension. When multicellular preparations were unloaded, RCC shortening was similar to that observed in myocytes. RCC magnitude decreased as the time between the last electrical stimulation and the RCC was increased (rest decay). RCC rest decay closely paralleled that of postrest twitches, suggesting that SR Ca loss is responsible for this process. Paired RCC experiments were used to investigate RCC relaxation and rest decay. When a second RCC (RCC2) was induced immediately after the first (RCC1), a large contracture was still observed (RCC2/RCC1 x 100 = 77.8 +/- 7.3%, mean +/- SD), indicating that the SR resequestered the majority of Ca on rewarming. This fraction was increased (to 92.9 +/- 5.5%) if Na and Ca-free solution was used during RCCs and rewarming, indicating that Na-Ca exchange also contributes to RCC relaxation. Increasing the interval between paired RCCs led to a decrease in RCC2, analogous to rest decay. This rest decay was abolished by inhibiting Na-Ca exchange, indicating that SR Ca loss during rest is mediated primarily by this process. RCCs were abolished by 10 mM caffeine. Ryanodine (1 microM) greatly accelerated RCC rest decay but had less effect on RCCs generated immediately after a train of stimulation. This accelerated rest decay was also dependent on Na-Ca exchange.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3