Muscarinic autoreceptors do not modulate kinetics of acetylcholine release in hearts

Author:

Dexter F.1,Rudy Y.1,Levy M. N.1

Affiliation:

1. Department of Biomedical Engineering, Case Western Reserve University,Cleveland, Ohio.

Abstract

We determined the time course of the cellular mechanism that mediates the attenuation of the chronotropic response in anesthetized dogs to decreases in the time interval (interpulse interval) between pulses of vagal stimuli. We injected propranolol, cut the cervical vagi, and repetitively stimulated the cardiac segment of the right vagus nerve with one brief burst of electrical pulses during each cardiac cycle. We recorded the initial and steady-state changes in cardiac cycle length that were induced by the phasic vagal stimulation. The decrease in the interpulse interval decreased the initial and steady-state responses. The time delay between the release of acetylcholine (ACh) from the vagal nerve endings in the heart and inhibition of the release of additional ACh was less than 4 ms. Published delays between the time of ACh release and the time of the resulting change in membrane potential, in other biological systems, are 30-12,000 ms. We conclude that the time delay was too brief for muscarinic autoreceptors to have mediated the attenuation of ACh release from postganglionic vagal nerve endings in the heart in response to decreases in interpulse interval.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3