Characteristics of canine coronary resistance arteries: importance of endothelium

Author:

Myers P. R.1,Banitt P. F.1,Guerra R.1,Harrison D. G.1

Affiliation:

1. Department of Internal Medicine, University of Iowa College ofMedicine, Iowa City.

Abstract

Canine coronary resistance vessels were studied in vitro to examine the role of the endothelium in modulating responses to acetylcholine, vasopressin, and thrombin and to compare these responses to those found in large epicardial vessels. Acetylcholine had no effect on passively distended microvessels; however, after preconstriction with the thromboxane analogue, U 46619 caused dose-dependent vasodilation [50% effective concentration (EC50), 0.05 microM; maximum response, 97.9 +/- 2.1% relaxation]. Large epicardial arterial rings studied in organ chambers similarly relaxed to acetylcholine (EC50, 0.07 microM; maximum response, 79 +/- 5% relaxation). Hemoglobin was utilized to inactivate endothelium-derived relaxing factor (EDRF), resulting in reversal of acetylcholine vasodilation in both the microvessels (92 +/- 3.2% reversal) and the large epicardial vessels (117 +/- 9%). Hemoglobin had no effect on passively distended or preconstricted microvessels. Vasopressin constricted resistance vessels by 22.3 +/- 5.9 microns at 500 microU/ml. Hemoglobin potentiated this response by 100%, suggesting that vasopressin elicited EDRF release. In large coronary arteries, however, vasopressin elicited endothelium-dependent dilation with maximal relaxation of 36 +/- 9% at 3,000 microU/ml. Thrombin produced endothelium-dependent relaxation of large epicardial arterial rings but only constricted coronary microvessels. The response to thrombin was not altered by hemoglobin. This study demonstrates that the endothelium of coronary microvessels, like that of larger vessels, importantly modulates vascular reactivity to selected agents. Furthermore, major differences exist between large and small coronary arteries in their response to vasopressin and thrombin.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3