Affiliation:
1. Department of Medicine, Brigham and Women's Hospital, Boston,Massachusetts.
Abstract
When sodium intake in the rat is reduced abruptly from the typical high level to a very low level (0.02%), sodium excretion falls exponentially, with a half time of 2-3 h. The result is that the rat achieves external sodium balance, in which intake equals excretion, on the new low intake within a few hours. In this study, we assessed the rate of activation of the renin-angiotensin-aldosterone axis and its contribution to blood pressure during that interval. Plasma renin activity and angiotensin II concentration had risen sharply within 8 h and did not change over the next 40 h. Plasma aldosterone concentration, on the other hand, continued to rise over 48 h. Within 8 h, blood pressure dependency on angiotensin II had increased sharply, as assessed by depressor responses to an angiotensin antagonist (Sar1-Ala8-angiotensin II) and to converting-enzyme inhibition (captopril). The depressor response to neither agent changed over the next 40 h. The pressor response to angiotensin II was blunted significantly by 8 h and also did not change over the next 40 h. The findings indicate that the rapid tempo of sodium homeostasis in the rat is matched by an equally rapid tempo of activation of the renin-angiotensin system, although the factors responsible for aldosterone release are probably more complex. Experiments to assess the renin-angiotensin system in the rat must be designed with this rapid tempo in mind.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献