Spectral characteristics of skin sympathetic nerve activity in heat-stressed humans

Author:

Cui Jian,Sathishkumar Mithra,Wilson Thad E.,Shibasaki Manabu,Davis Scott L.,Crandall Craig G.

Abstract

Skin sympathetic nerve activity (SSNA) exhibits low- and high-frequency spectral components in normothermic subjects. However, spectral characteristics of SSNA in heat-stressed subjects are unknown. Because the main components of the integrated SSNA during heat stress (sudomotor/vasodilator activities) are different from those during normothermia and cooling (vasoconstrictor activity), we hypothesize that spectral characteristics of SSNA in heat-stressed subjects will be different from those in subjects subjected to normothermia or cooling. In 17 healthy subjects, SSNA, electrocardiogram, arterial blood pressure (via Finapres), respiratory activity, and skin blood flow were recorded during normothermia and heat stress. In 7 of the 17 subjects, these variables were also recorded during cooling. Spectral characteristics of integrated SSNA, R-R interval, beat-by-beat mean blood pressure, skin blood flow variability, and respiratory excursions were assessed. Heat stress and cooling significantly increased total SSNA. SSNA spectral power in the low-frequency (0.03–0.15 Hz), high-frequency (0.15–0.45 Hz), and very-high-frequency (0.45–2.5 Hz) regions was significantly elevated by heat stress and cooling. Interestingly, heat stress caused a greater relative increase of SSNA spectral power within the 0.45- to 2.5-Hz region than in the other spectral ranges; cooling did not show this effect. Differences in the SSNA spectral distribution between normothermia/cooling and heat stress may reflect different characteristics of central modulation of vasoconstrictor and sudomotor/vasodilator activities.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3