Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton

Author:

Davani Ehsan Y.1,Dorscheid Delbert R.1,Lee Cheng-Han1,van Breemen Cornelis1,Walley Keith R.1

Affiliation:

1. Critical Care Research Laboratories, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada V6Z 1Y6

Abstract

ICAM-1 mediates interaction of cardiomyocytes with the extracellular matrix and leukocytes and may play a role in altering contractility. To investigate this possibility, rat ventricular cardiomyocytes were activated using TNF-α, IL-1β, or LPS, washed, cultured with quiescent rat polymorphonuclear leukocytes (PMNs) for 4 h, and electrically stimulated to determine fractional shortening. PMNs cultured with activated cardiomyocytes reduced control fractional shortening of 20.5 ± 0.7% by −2.8 ± 0.3% per adherent PMN ( P < 0.001). Fixing PMNs with paraformaldehyde or glutaraldehyde did not prevent PMN-mediated decreases in cardiomyocyte fractional shortening. However, PMN adherence and decreased fractional shortening were prevented by anti-ICAM-1 and anti-CD18 antibodies. Reduced fractional shortening was reproduced in the absence of PMNs by ICAM-1 binding using cross-linking antibodies (reduced by 36 ± 3% from control, P < 0.01). Immunofluorescent staining demonstrated increased cortical cytoskeleton-associated focal adhesion kinase expression after ICAM-1 cross-linking, suggesting involvement of the actin cytoskeleton. Indeed, disruption of F-actin filament assembly using cytochalasin D or latrunculin A did not prevent PMN adherence but prevented decreased fractional shortening. Inhibition of the cytoskeleton-associated Rho-kinase pathway with HA-1077 prevented ICAM-1-mediated decreases in cardiomyocyte contractility, further suggesting a central role of the actin cytoskeleton. Importantly, ICAM-1 cross-linking did not alter the total intracellular Ca2+transient during cardiomyocyte contraction but greatly increased heterogeneity of intracellular Ca2+release. Thus we have identified a novel regulatory mechanism of cardiomyocyte contractility involving the actin cytoskeleton as a central regulator of the normally highly coordinated pattern of sarcoplasmic Ca2+release. Cardiomyocyte ICAM-1 binding, by PMNs or other ligands, induces decreased cardiomyocyte contractility via this pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3