Author:
Kido Masakuni,Otani Hajime,Kyoi Shiori,Sumida Tomohiko,Fujiwara Hiroyoshi,Okada Takayuki,Imamura Hiroji
Abstract
Dystrophin is an integral membrane protein involved in the stabilization of the sarcolemmal membrane in cardiac muscle. We hypothesized that the loss of membrane dystrophin during ischemia and reperfusion is responsible for contractile force-induced myocardial injury and that cardioprotection afforded by ischemic preconditioning (IPC) is related to the preservation of membrane dystrophin. Isolated and perfused rat hearts were subjected to 30 min of global ischemia, followed by reperfusion with or without the contractile blocker 2,3-butanedione monoxime (BDM). IPC was introduced by three cycles of 5-min ischemia and 5-min reperfusion before the global ischemia. Dystrophin was distributed exclusively in the membrane of myocytes in the normally perfused heart but was redistributed to the myofibril fraction after 30 min of ischemia and was lost from both of these compartments during reperfusion in the presence or absence of BDM. The loss of dystrophin preceded uptake of the membrane-impermeable Evans blue dye by myocytes that occurred after the withdrawal of BDM and was associated with creatine kinase release and the development of contracture. Although IPC did not alter the redistribution of membrane dystrophin induced by 30 min of ischemia, it facilitated the restoration of membrane dystrophin during reperfusion. Also, myocyte necrosis was not observed when BDM was withdrawn after complete restoration of membrane dystrophin. These results demonstrate that IPC-mediated restoration of membrane dystrophin during reperfusion correlates with protection against contractile force-induced myocardial injury and suggest that the cardioprotection conferred by IPC can be enhanced by the temporary blockade of contractile activity until restoration of membrane dystrophin during reperfusion.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献