Quantitative comparison of sarcomeric phosphoproteomes of neonatal and adult rat hearts

Author:

Yuan Chao,Sheng Quanhu,Tang Haixu,Li Yixue,Zeng Rong,Solaro R. John

Abstract

Neonatal hearts respond to stress and function in an environment quite different from adult hearts. There is evidence that these functional differences not only reflect modifications in the abundance and isoforms of sarcomeric proteins but also in the modulation of sarcomeric protein phosphorylation. Yet our understanding of changes in sarcomeric protein phosphorylation in development is incomplete. In the experiments reported here, we first quantified the intact sarcomeric protein phosphorylation status between neonatal and adult rat hearts by employing comparative two-dimensional (2-D) gel electrophoresis in conjunction with phosphoprotein-specific staining. Subsequently, we measured phosphorylation changes at the peptide level by employing high-resolution linear ion trap-Fourier transform (LTQ-FT) mass spectrometry analysis of titanium dioxide-enriched phosphopeptides differentially labeled with16O/18O during in-gel digestion. We also employed Western blot analysis using phosphorylation site-specific antibodies to measure phosphorylation changes. Our data demonstrated the novel finding that phosphorylation levels of myosin-binding protein C (MyBP-C) at Ser295and Ser315as well as tropomyosin at Ser283increased, whereas phosphorylation levels of MyBP-C at Ser320and myosin light chain 2 at Ser15decreased in neonatal hearts compared with the same sites in adult hearts. Although our data highlight the significant challenges in understanding relations between protein phosphorylation and cardiac function, they do support the hypothesis that developmental changes in the modulation of protein are functionally significant and correlate with the prevailing physiological state.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3