Affiliation:
1. Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with dynamic lung hyperinflation (DH), increased pulmonary vascular resistance (PVR), and large increases in negative intrathoracic pressure (nITP). The individual and interactive effect of these stressors on left ventricular (LV) filling, emptying, and geometry and the role of direct ventricular interaction (DVI) in mediating these interactions have not been fully elucidated. Twenty healthy subjects were exposed to the following stressors alone and in combination: 1) inspiratory resistive loading of −20 cmH2O (nITP), 2) expiratory resistive loading to cause dynamic hyperinflation (DH), and 3) normobaric-hypoxia to increase PVR (hPVR). LV volumes and geometry were assessed using triplane echocardiography. LV stroke volume (LVSV) was reduced during nITP by 7 ± 7% (mean ± SD; P < 0.001) through a 4 ± 5% reduction in LV end-diastolic volume (LVEDV) ( P = 0.002), while DH reduced LVSV by 12 ± 13% ( P = 0.001) due to a 9 ± 10% reduction in LVEDV ( P < 0.001). The combination of nITP and DH (nITP+DH) caused larger reductions in LVSV (16 ± 16%, P < 0.001) and LVEDV (12 ± 10%, P < 0.001) than nITP alone ( P < 0.05). The addition of hPVR to nITP+DH did not further reduce LV volumes. Significant septal flattening (indicating DVI) occurred in all conditions, with a significantly greater leftward septal shift occurring with nITP+DH than either condition alone ( P < 0.05). In summary, the interaction of nITP and DH reduces LV filling through DVI. However, DH may be more detrimental to LV hemodynamics than nITP, likely due to mediastinal constraint of the heart amplifying DVI.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献