Reduced conduction reserve in the diabetic rat heart: role of iPLA2activation in the response to ischemia

Author:

Rahnema Parisa1,Shimoni Yakhin2,Nygren Anders13

Affiliation:

1. Department of Electrical and Computer Engineering,

2. Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada

3. Centre for Bioengineering Research & Education, and

Abstract

Hearts from streptozotocin (STZ)-induced diabetic rats have previously been shown to have impaired intercellular electrical coupling, due to reorganization (lateralization) of connexin43 proteins. Due to the resulting reduction in conduction reserve, conduction velocity in diabetic hearts is more sensitive to conditions that reduce cellular excitability or intercellular electrical coupling. Diabetes is a known risk factor for cardiac ischemia, a condition associated with both reduced cellular excitability and reduced intercellular coupling. Activation of Ca2+-independent phospholipase A2(iPLA2) is known to be part of the response to acute ischemia and may contribute to the intercellular uncoupling by causing increased levels of arachidonic acid and lysophosphatidyl choline. Normally perfused diabetic hearts are known to exhibit increased iPLA2activity and may thus be particularly sensitive to further activation of these enzymes. In this study, we used voltage-sensitive dye mapping to assess changes in conduction velocity in response to acute global ischemia in Langendorff-perfused STZ-induced diabetic hearts. Conduction slowing in response to ischemia was significantly larger in STZ-induced diabetic hearts compared with healthy controls. Similarly, slowing of conduction velocity in response to acidosis was also more pronounced in STZ-induced diabetic hearts. Inhibition of iPLA2activity using bromoenol lactone (BEL; 10 μM) had no effect on the response to ischemia in healthy control hearts. However, in STZ-induced diabetic hearts, BEL significantly reduced the amount of conduction slowing observed beginning 5 min after the onset of ischemia. BEL treatment also significantly increased the time to onset of sustained arrhythmias in STZ-induced diabetic hearts but had no effect on the time to arrhythmia in healthy control hearts. Thus, our results suggest that iPLA2activation in response to acute ischemia in STZ-induced diabetic hearts is more pronounced than in control hearts and that this response is a significant contributor to arrhythmogenic conduction slowing.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3