Cardiac microdialysis to estimate interstitial adenosine and coronary blood flow

Author:

Van Wylen D. G.1,Willis J.1,Sodhi J.1,Weiss R. J.1,Lasley R. D.1,Mentzer R. M.1

Affiliation:

1. Department of Surgery, School of Medicine and Biomedical Sciences,State University of New York, Buffalo 14215.

Abstract

The purpose of this study was twofold: 1) to investigate the feasibility and usefulness of cardiac microdialysis for the simultaneous estimation of regional cardiac interstitial fluid (ISF) adenosine (ADO) concentration and coronary blood flow (CBF); and 2) to determine the changes in the ISF levels of ADO and CBF during cardiac stimulation or regional myocardial ischemia. Cardiac microdialysis probes were implanted in the left ventricular myocardium of chloralose-urethan-anesthetized dogs and perfused with Krebs-Henseleit buffer. The concentration of ADO in the effluent dialysate was used as an index of intramyocardial ISF ADO concentration while local CBF was measured by H2 clearance via a platinum wire within the dialysis fiber. Dialysate ADO was elevated immediately after insertion of the microdialysis probe, declined rapidly in the first 20 min, stabilized by 60 min, and remained constant for 2 h. Based on the relationship in vitro and in vivo between microdialysis probe perfusion rate and dialysate ADO concentration, ISF ADO concentration within the left ventricular myocardium was estimated to be 0.9-1.3 microM. Dobutamine (10 micrograms.kg-1.min-1) infusion resulted in a 36% increase in CBF and a 2.5-fold increase in dialysate ADO (n = 9; P less than 0.05). Regional myocardial ischemia, induced by occlusion of the left anterior descending artery (LAD), caused a 13-fold increase in dialysate ADO in the LAD perfused myocardium (n = 9; P less than 0.05). These results are consistent with the ADO hypothesis and suggest that cardiac microdialysis provides a reliable technique for the sampling of regional intramyocardial ISF.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3