[Sar1]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells

Author:

Aceto J. F.1,Baker K. M.1

Affiliation:

1. Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania17822.

Abstract

Cardiac hypertrophy is a process that occurs in response to various mechanical or hormonal stimuli. Stimulation of the renin-angiotensin system is involved in the process of cardiac hypertrophy through mechanisms related to increased peripheral vascular resistance and increased cardiac afterload. In this study we determined whether [Sar1]angiotensin II (ANG II) directly stimulated protein synthesis and cell growth in embryonic chick myocytes in cell culture. Eighteen-day-old embryonic chick myocytes in subconfluent cell culture, incubated in a chemically defined serum-free media, showed a significant increase in total protein content, 18.5, 26.2, and 22.2%, respectively, when exposed to [Sar1]ANG II (1 microM/day) for 5, 7, and 9 days, respectively. The increase in total protein resulted in part from an increase in the fractional protein synthesis rate of 21.7, 16.5, and 14.9% at 5, 7, and 9 days, respectively. Total DNA and RNA levels did not change significantly following a 4-day exposure to [Sar1]ANG II in subconfluent culture. The relative rate of protein synthesis, determined by pulse labeling for 3 h with [3H]phenylalanine, showed increases of 23.4, 22.9, and 17.8% over control after 4, 5, and 6 days of exposure to [Sar1]ANG II. The incorporation of [3H]phenylalanine was blocked by the specific ANG II-receptor antagonist [Sar1,Ile8]ANG II. The data demonstrate a receptor-mediated increase in the rate of protein synthesis in cultured chick myocytes in response to [Sar1]ANG II, with a resultant increase in total cellular protein. This angiotensin peptide appears to directly stimulate protein synthesis in cultured embryonic chick myocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 172 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3