A mathematical model of a bullfrog cardiac pacemaker cell

Author:

Rasmusson R. L.1,Clark J. W.1,Giles W. R.1,Shibata E. F.1,Campbell D. L.1

Affiliation:

1. Department of Electrical and Computer Engineering, Rice University,Houston, Texas 77251-1892.

Abstract

Previous models of cardiac cellular electrophysiology have been based largely on voltage-clamp measurements obtained from multicellular preparations and often combined data from different regions of the heart and a variety of species. We have developed a model of cardiac pacemaking based on a comprehensive set of voltage-clamp measurements obtained from single cells isolated from one specific tissue type, the bullfrog sinus venosus (SV). Consequently, sarcolemmal current densities and kinetics are not influenced by secondary phenomena associated with multicellular preparations, allowing us to realistically simulate processes thought to be important in pacemaking, including the Na(+)-K+ pump and Na(+)-Ca2+ exchanger. The membrane is surrounded extracellularly by a diffusion-limited space and intracellularly by a limited myoplasmic volume containing Ca2(+)-binding proteins (calmodulin, troponin). The model makes several predictions regarding mechanisms involved in pacing. 1) Primary pacemaking cannot be attributed to any single current but arises from both the lack of a background K+ current and a complex interaction between Ca2+, delayed-rectifier K+, and background leak currents. 2) Ca2+ current displays complex behavior and is important during repolarization. 3) Because of Ca2+ buffering by myoplasmic proteins, the Na(+)-Ca2+ exchanger current is small and has little influence on action potential repolarization but may modulate the maximum diastolic potential. 4) The Na(+)-K+ pump current does not play an active role in repolarization but is of sufficient size to modulate the rate of diastolic depolarization. 5) K+ accumulation and Ca2+ depletion may occur in the extracellular spaces but play no role in either the diastolic depolarization or repolarization of a single action potential. This model illustrates the importance of basing simulations on quantitative measurements of ionic currents in myocytes and of including both electrogenic transporter mechanisms and Ca2+ buffering by myoplasmic Ca2(+)-binding proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3