Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity

Author:

Saul J. P.1,Rea R. F.1,Eckberg D. L.1,Berger R. D.1,Cohen R. J.1

Affiliation:

1. Division of Health Sciences and Technology, Harvard-MassachusettsInstitute of Technology, Cambridge 02139.

Abstract

Low-frequency (less than 0.15 Hz) fluctuations of heart rate are increased by maneuvers, such as standing or hemorrhage, that increase sympathetic outflow to the heart and vasculature. To test the hypothesis that low-frequency heart rate fluctuations provide an index of sympathetic efferent activity, we compared power spectral measures of heart rate variability with two measures of sympathetic outflow, peroneal nerve sympathetic activity and antecubital vein plasma norepinephrine concentrations. Autonomic outflow was varied with graded stepwise infusions of nitroprusside and phenylephrine, which lowered or raised average diastolic pressures by approximately 15 mmHg. Before vasoactive drug infusions, no spectral measure of heart rate variability correlated significantly with muscle sympathetic activity, plasma norepinephrine concentration, average heart rate, or arterial pressure. During increases of muscle sympathetic activity and probable reductions of cardiac vagal activity induced by nitroprusside, the fraction of heart rate spectral power at low frequencies, but not the absolute value, correlated significantly with muscle sympathetic activity and plasma norepinephrine. However, during reductions of muscle sympathetic activity and probable elevations of cardiac vagal activity induced by phenylephrine, no measure of heart rate variability correlated significantly with muscle sympathetic activity. These findings can be explained by a model of heart rate control in which low-frequency heart rate fluctuations result from changing levels of both the sympathetic and parasympathetic inputs to the sinoatrial node.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3