Time-domain formulation of asymmetric T-tube model of arterial system

Author:

Campbell K. B.1,Burattini R.1,Bell D. L.1,Kirkpatrick R. D.1,Knowlen G. G.1

Affiliation:

1. Department of Veterinary and Comparative Anatomy, Physiology, andPharmacology, Washington State University, Pullman 99164-6520.

Abstract

An asymmetric T-tube model of the arterial system with complex terminal loads was formulated in the time domain. The model was formulated to allow it to be fitted to the aortic pressure waveform, the aortic flow waveform, or simultaneously to both the aortic and descending aortic flow waveforms. Pressure and flow measurements were taken in anesthetized open-chest dogs under basal, vasoconstricted, and vasodilated states. It was found that the T-tube model fitted the data well in all formulations and in all vasoactive states. However, all parameters were estimated accurately in all vasoactive states only with the formulation that fitted to both aortic and descending aortic flow simultaneously. The T-tube model was compared with the three-element windkessel model with regard to the respective models' ability to recreate specific aspects of the pressure waveform and with regard to the estimates of global arterial parameters. The T-tube model recremated those features of the pressure waveform, such as diastolic waves, that the windkessel model could not. Also, the T-tube model systematically estimated lower global arterial compliance and higher characteristic impedance than the windkessel. It was argued that the T-tube model accurately represented important wave transmission features of the arterial loading system. The model is recommended for use in characterizing the arterial load and for merging with representations of the left ventricle in studies of left ventricle-systemic arterial interaction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3