Potassium dilates rat cerebral arteries by two independent mechanisms

Author:

McCarron J. G.1,Halpern W.1

Affiliation:

1. Department of Physiology and Biophysics, College of Medicine,University of Vermont, Burlington 05405.

Abstract

Cerebral blood flow is regulated by brain metabolism, and there is evidence to suggest that changes in extracellular potassium concentration are important in linking brain metabolic activity with blood supply. In this study, the effect of low concentrations of potassium on the spontaneous tone of resistance-sized isolated posterior cerebral arteries from Wistar-Kyoto rats was examined. At a transmural pressure of approximately 58 mmHg, the vessels developed spontaneous tone that was 69 +/- 2% of their fully relaxed diameter of 184 +/- 2 microns (n = 50). Introduction of potassium (less than 5 mM) after a 5-min period in potassium-free physiological saline solution resulted in transient dilations, which were not attenuated by barium or cesium but abolished by ouabain. However, potassium concentrations between 7 and 15 mM produced dilations that lacked a transient component and were sensitive to barium, cesium, and ouabain. Maintained dilations to 10 mM K+ persisted in tetrodotoxin, tetraethylammonium, and glibenclamide and after endothelium removal. These results suggest that potassium dilation of cerebral arteries has two independent components, the first of which may be caused by stimulation of the electrogenic sodium pump (0-5 mM K+), whereas the second (greater than 7 mM K+) results from activation of a ouabain-, barium-, and cesium-sensitive process. The latter process describes a means by which potassium may effect prolonged changes in cerebral blood flow.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3