Human coronary endothelial cells convert 14,15-EET to a biologically active chain-shortened epoxide

Author:

Fang Xiang1,Weintraub Neal L.2,Oltman Christine L.2,Stoll Lynn L.2,Kaduce Terry L.1,Harmon Shawn1,Dellsperger Kevin C.2,Morisseau Christophe3,Hammock Bruce D.3,Spector Arthur A.12

Affiliation:

1. Departments of Biochemistry and

2. Internal Medicine, University of Iowa, Iowa City, Iowa 52242; and

3. Department of Entomology and Cancer Research Center, University of California, Davis, California 95616

Abstract

Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) play an important role in the regulation of vascular reactivity and function. Conversion to the corresponding dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolases is thought to be the major pathway of EET metabolism in mammalian vascular cells. However, when human coronary artery endothelial cells (HCEC) were incubated with 3H-labeled 14,15-EET, chain-shortened epoxy fatty acids, rather than DHET, were the most abundant metabolites. After 4 h of incubation, 23% of the total radioactivity remaining in the medium was converted to 10,11-epoxy-hexadecadienoic acid (16:2), a product formed from 14,15-EET by two cycles of β-oxidation, whereas only 15% was present as 14,15-DHET. Although abundantly present in the medium, 10,11-epoxy-16:2 was not detected in the cell lipids. Exogenously applied 3H-labeled 10,11-epoxy-16:2 was neither metabolized nor retained in the cells, suggesting that 10,11-epoxy-16:2 is a major product of 14,15-EET metabolism in HCEC. 10,11-Epoxy-16:2 produced potent dilation in coronary microvessels. 10,11-Epoxy-16:2 also potently inhibited tumor necrosis factor-α-induced production of IL-8, a proinflammatory cytokine, by HCEC. These findings implicate β-oxidation as a major pathway of 14,15-EET metabolism in HCEC and provide the first evidence that EET-derived chain-shortened epoxy fatty acids are biologically active.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3