Oxidative stress-induced dysregulation of arteriolar wall shear stress and blood pressure in hyperhomocysteinemia is prevented by chronic vitamin C treatment

Author:

Bagi Zsolt,Csekö Csongor,Tóth Erika,Koller Akos

Abstract

We aimed to test the hypothesis that an enhanced level of reactive oxygen species (ROS) is primarily responsible for the impairment of nitric oxide (NO)-mediated regulation of arteriolar wall shear stress (WSS) in hyperhomocysteinemia (HHcy). Thus flow/WSS-induced dilations of pressurized gracilis muscle arterioles (basal diameter: ∼170 μm) isolated from control (serum Hcy: 6 ± 1 μM), methionine diet-induced HHcy rats (4 wk, serum Hcy: 30 ± 6 μM), and HHcy rats treated with vitamin C, a known antioxidant (4 wk, 150 mg · kg body wt–1 · day–1; serum Hcy: 32 ± 10 μM), were investigated. In vessels of HHcy rats, increases in intraluminal flow/WSS-induced dilations were converted to constrictions. Constrictions were unaffected by inhibition of NO synthesis by Nω-nitro-l-arginine methyl ester (l-NAME). Vitamin C treatment of HHcy rats reversed the WSS-induced arteriolar constrictions to l-NAME-sensitive dilations but did not affect control responses. Similar changes in responses were obtained for the calcium ionophore A-23187. In addition, diastolic and mean arterial blood pressure and serum 8-isoprostane levels (a marker of in vivo oxidative stress) were significantly elevated in rats with HHcy, changes that were normalized by vitamin C treatment. Taken together, our data show that in chronic HHcy long-term vitamin C treatment, by decreasing oxidative stress in vivo, enhanced NO bioavailability, restored the regulation of shear stress in arterioles, and normalized systemic blood pressure. Thus our study provides evidence that oxidative stress is an important in vivo mechanism that is primarily responsible for the development of endothelial dysregulation of WSS in HHcy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3