Proteomic identification of 3-nitrotyrosine-containing rat cardiac proteins: effects of biological aging

Author:

Kanski Jaroslaw,Behring Antje,Pelling Jill,Schöneich Christian

Abstract

Proteomic techniques were used to identify cardiac proteins from whole heart homogenate and heart mitochondria of Fisher 344/Brown Norway F1 rats, which suffer protein nitration as a consequence of biological aging. Soluble proteins from young (5 mo old) and old (26 mo old) animals were separated by one- and two-dimensional gel electrophoresis. One- and two-dimensional Western blots with an anti-nitrotyrosine antibody show an age-related increase in the immunoresponse of a few specific proteins, which were identified by nanoelectrospray ionization-tandem mass spectrometry (NSI-MS/MS). Complementary proteins were immunoprecipitated with an immobilized anti-nitrotyrosine antibody followed by NSI-MS/MS analysis. A total of 48 proteins were putatively identified. Among the identified proteins were α-enolase, α-aldolase, desmin, aconitate hydratase, methylmalonate semialdehyde dehydrogenase, 3-ketoacyl-CoA thiolase, acetyl-CoA acetyltransferase, GAPDH, malate dehydrogenase, creatine kinase, electron-transfer flavoprotein, manganese-superoxide dismutase, F1-ATPase, and the voltage-dependent anion channel. Some contaminating blood proteins including transferrin and fibrinogen β-chain precursor showed increased levels of nitration as well. MS/MS analysis located nitration at Y105 of the electron-transfer flavoprotein. Among the identified proteins, there are important enzymes responsible for energy production and metabolism as well as proteins involved in the structural integrity of the cells. Our results are consistent with age-dependent increased oxidative stress and with free radical-dependent damage of proteins. Possibly the oxidative modifications of the identified proteins contribute to the age-dependent degeneration and functional decline of heart proteins.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3