The functional role of electrophysiological heterogeneity in the rabbit ventricle during rapid pacing and arrhythmias

Author:

Bishop Martin J.1,Vigmond Edward J.2,Plank Gernot3

Affiliation:

1. Biomedical Engineering Department, Division of Imaging Sciences, King's College London, London, United Kingdom;

2. Institut LIRYC, Université Bordeaux 1, Bordeaux, France; and

3. Institute of Biophysics, Medical University of Graz, Graz, Austria and Oxford e-Research Centre, University of Oxford, Oxford, United Kingdom

Abstract

Electrophysiological heterogeneity in action potential recordings from healthy intact hearts remains highly variable and, where present, is almost entirely abolished at fast pacing rates. Consequently, the functional importance of intrinsic action potential duration (APD) heterogeneity in healthy ventricles, and particularly its role during rapidly activating reentrant arrhythmias, remain poorly understood. By incorporating both transmural and apicobasal APD heterogeneity within a biventricular rabbit computational model and comparing with an equivalent homogeneous model, we directly investigated the functional importance of intrinsic APD heterogeneity under fast pacing and arrhythmogenic protocols. Although differences in APD were significantly modulated at the tissue level during pacing and further reduced as pacing frequency increased, small differences were still noticeable. Such differences were further marginally accentuated/attenuated via electrotonic effects relative to wavefront propagation directions. The remaining small levels of APD heterogeneity under the fastest pacing frequencies resulted in arrhythmia initiation via heterogeneous conduction block, in contrast to complete block in the homogeneous model. Such induction mechanisms were more evident during premature stimuli at slower paced rhythms where intrinsic heterogeneity remained to a greater degree. During sustained arrhythmias, however, intrinsic heterogeneity made little difference to overall reentrant behavior, either visually, or in terms of duration, metrics quantifying filament/phase singularity dynamics, and global electrocardiogram characteristics. These findings suggest that, despite being important during arrhythmia initiation, intrinsic electrophysiological heterogeneity plays little functional role during rapid pacing and sustained arrhythmia dynamics in the healthy ventricle and thus questions the need to incorporate such detail in computational models when simulating rapid arrhythmias.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3