Affiliation:
1. School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom;
2. Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; and
3. Faculty of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
Abstract
We investigated the effect of activating metabolically sensitive skeletal muscle afferents (muscle metaboreflex) on cerebral blood flow and the potentially confounding influence of concomitant changes in the partial pressure of arterial carbon dioxide. Eleven healthy males (25 ± 4 yr) performed submaximal leg cycling exercise on a semirecumbent cycle ergometer (heart rate: ∼120 beats/min), and assessments were made of the partial pressure of end-tidal carbon dioxide (PetCO2), internal carotid artery blood flow (ICAQ) and conductance (ICACVC), and middle cerebral artery mean blood velocity (MCAvm) and conductance index (MCACVCi).The muscle metaboreflex was activated during cycling with leg blood flow restriction (BFR) or isolated with postexercise ischemia (PEI). In separate trials, PetCO2was either permitted to fluctuate spontaneously (control trial) or was clamped at 1 mmHg above resting levels (PetCO2clamp trial). In the control trial, leg cycling with BFR decreased PetCO2(Δ−4.8 ± 0.9 mmHg vs. leg cycling exercise) secondary to hyperventilation, while ICAQ, ICACVC, and MCAvmwere unchanged and MCACVCidecreased. However, in the PetCO2clamp trial, leg cycling with BFR increased both MCAvm(Δ5.9 ± 1.4 cm/s) and ICAQ(Δ20.0 ± 7.8 ml/min) and attenuated the decrease in MCACVCi, while ICACVCwas unchanged. In the control trial, PEI decreased PetCO2(Δ−7.0 ± 1.3 mmHg vs. rest), MCAvmand MCACVCi, whereas ICAQand ICACVCwere unchanged. In contrast, in the PetCO2clamp trial both ICAQ(Δ18.5 ± 11.9 ml/min) and MCAvm(Δ8.8 ± 2.0 cm/s) were elevated, while ICACVCand MCACVCiwere unchanged. In conclusion, when hyperventilation-related decreases in PetCO2are prevented the activation of metabolically sensitive skeletal muscle afferent fibers increases cerebral blood flow.
Funder
Coordination for Improvement of Higher Education Personel (CAPES, Brasil)
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献