Alterations of field potentials in isotropic cardiomyocyte cell layers induced by multiple endogenous pacemakers under normal and hypothermal conditions

Author:

Kienast R.1,Stöger M.12,Handler M.1,Hanser F.1,Baumgartner C.1

Affiliation:

1. Institute of Electrical and Biomedical Engineering, University for Health Sciences, Medical Informatics and Technology, Hall in Tyrol, Austria; and

2. Division of Internal Medicine III/Cardiology, Medical University Innsbruck, Innsbruck, Austria

Abstract

The use of autonomous contracting randomly grown cardiomyocyte monolayers cultivated on microelectrode arrays (MEAs) represents an accepted experimental setting for preclinical experimental research in the field of cardiac electrophysiology. A dominant pacemaker forces a monolayer to adhere to a regular and synchronized contraction. Randomly distributed multiple pacemakers interfere with this dominant center, resulting in more or less frequent changes of propagation direction. This study aims to characterize the impact of changing propagation directions at single electrodes of the MEA on the four intrinsic parameters of registered field potentials (FPs) FPrise, FPMIN, FPpre, and FPdur and conduction velocity (CV) under normal and hypothermal conditions. Primary cultures of chicken cardiomyocytes ( n = 18) were plated directly onto MEAs and FPs were recorded in a temperature range between 37 and 29°C. The number and spatiotemporal distribution of biological and artificial pacemakers of each cell layer inside and outside of the MEA registration area were evaluated using an algorithm developed in-house. In almost every second myocardial cell layer, interfering autonomous pacemakers were detected at stable temperatures, showing random spatial distributions with similar beating rates. Additionally, a temperature-dependent change of the dominant pacemaker center was observed in n = 16 experiments. A significant spread-direction-dependent variation of CV, FPrise, FPMIN, and FPpre up to 14% could be measured between different endogenous pacemakers. In conclusion, based on our results, disregarding the spatial origin of excitation may lead to misinterpretations and erroneous conclusions of FP parameters in the verification of research hypotheses in cellular electrocardiology.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3