Balance of S1P1and S1P2signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature

Author:

Lee Jen-Fu,Gordon Sharon,Estrada Rosendo,Wang Lichun,Siow Deanna L.,Wattenberg Binks W.,Lominadze David,Lee Menq-Jer

Abstract

Sphingosine-1-phosphate (S1P) regulates various molecular and cellular events in cultured endothelial cells, such as cytoskeletal restructuring, cell-extracellular matrix interactions, and intercellular junction interactions. We utilized the venular leakage model of the cremaster muscle vascular bed in Sprague-Dawley rats to investigate the role of S1P signaling in regulation of microvascular permeability. S1P signaling is mediated by the S1P family of G protein-coupled receptors (S1P1-5receptors). S1P1and S1P2receptors, which transduce stimulatory and inhibitory signaling, respectively, are expressed in the endothelium of the cremaster muscle vasculature. S1P administration alone via the carotid artery was unable to protect against histamine-induced venular leakage of the cremaster muscle vascular bed in Sprague-Dawley rats. However, activation of S1P1-mediated signaling by SEW2871 and FTY720, two agonists of S1P1, significantly inhibited histamine-induced microvascular leakage. Treatment with VPC 23019 to antagonize S1P1-regulated signaling greatly potentiated histamine-induced venular leakage. After inhibition of S1P2signaling by JTE-013, a specific antagonist of S1P2, S1P was able to protect microvascular permeability in vivo. Moreover, endothelial tight junctions and barrier function were regulated by S1P1- and S1P2-mediated signaling in a concerted manner in cultured endothelial cells. These data suggest that the balance between S1P1and S1P2signaling regulates the homeostasis of microvascular permeability in the peripheral circulation and, thus, may affect total peripheral vascular resistance.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3