Role of the gap junction in ischemic preconditioning in the heart

Author:

Miura Tetsuji1,Miki Takayuki1,Yano Toshiyuki1

Affiliation:

1. Division of Cardiology, Second Department of Internal Medicine, Sapporo Medical University, School of Medicine, Sapporo, Japan

Abstract

The gap junction plays roles not only in electrical coupling of cardiomyocytes but also in intercellular transport of biologically active substances. Furthermore, the gap junction participates in decision making on cell survival versus cell death in various types of cells, and a part of reperfusion injury in the heart has been indicated to be gap junction mediated. The contribution of gap junction communication (GJC) and/or mitochondrial “hemichannels” to protective signaling during the trigger phase of ischemic preconditioning (IPC) is suggested by observations that IPC failed to protect the heart when GJC was blocked during IPC. Although ischemia suppresses both electrical and chemical GJC, chemical GJC persists for a considerable time after electrical GJC is lost. IPC facilitates the ischemia-induced suppression of chemical GJC, whereas IPC delays the reduction of electrical GJC after ischemia. The inhibition of GJC during sustained ischemia and reperfusion by GJC blockers mimics the effect of IPC on myocardial necrosis. IPC induces distinct effects on the interaction of connexin-43 with protein kinases, and the phosphorylation of connexin-43 at Ser368 by PKCε is a primary mechanism of inhibition of chemical GJC by IPC. Several lines of evidence support the notion that the modulation of GJC is a part of the mechanism of IPC-induced protection against myocardial necrosis and arrhythmias, though what percentage of IPC protection is attributable to the inhibition of GJC during ischemia-reperfusion still remains unclear.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Role of miRNA-29b1 on the Hypoxia-Induced Apoptosis in Mammalian Cardiomyocytes;Journal of Biomedical Nanotechnology;2024-09-01

2. The role of miRNA-29b1 on the hypoxia-induced apoptosis in mammalian cardiomyocytes;European Journal of Histochemistry;2024-06-27

3. Simulating Electrocardiogram Using Finite Element Model During Ischemia Development;2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA);2022-12-15

4. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury;Frontiers in Cell and Developmental Biology;2022-12-06

5. GJA1-20k and Mitochondrial Dynamics;Frontiers in Physiology;2022-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3