Cav1.2 splice variant with exon 9* is critical for regulation of cerebral artery diameter

Author:

Nystoriak Matthew A.1,Murakami Kentaro1,Penar Paul L.2,Wellman George C.12

Affiliation:

1. Departments of 1Pharmacology and Surgery,

2. Division of Neurological Surgery, University of Vermont, College of Medicine, Burlington, Vermont

Abstract

L-type voltage-dependent Ca2+channels (VDCCs) are essential for numerous processes in the cardiovascular and nervous systems. Alternative splicing modulates proteomic composition of Cav1.2 to generate functional variation between channel isoforms. Here, we describe expression and function of Cav1.2 channels containing alternatively spliced exon 9* in cerebral artery myocytes. RT-PCR showed expression of Cav1.2 splice variants both containing (α1C9/9*/10) and lacking (α1C9/10) exon 9* in intact rabbit and human cerebral arteries. With the use of laser capture microdissection and RT-PCR, expression of mRNA for both α1C9/9*/10and α1C9/10was demonstrated in isolated cerebral artery myocytes. Quantitative real-time PCR revealed significantly greater α1C9/9*/10expression relative to α1C9/10in intact rabbit cerebral arteries compared with cardiac tissue and cerebral cortex. To demonstrate a functional role for α1C9/9*/10, smooth muscle of intact cerebral arteries was treated with antisense oligonucleotides targeting α1C9/9*/101C9/9*/10-AS) or exon 9 (α1C-AS), expressed in all Cav1.2 splice variants, by reversible permeabilization and organ cultured for 1–4 days. Treatment with α1C9/9*/10-AS reduced maximal constriction induced by elevated extracellular K+([K+]o) by ∼75% compared with α1C9/9*/10-sense-treated arteries. Maximal constriction in response to the Ca2+ionophore ionomycin and [K+]oEC50values were not altered by antisense treatment. Decreases in maximal [K+]o-induced constriction were similar between α1C9/9*/10-AS and α1C-AS groups (22.7 ± 9% and 25.6 ± 4% constriction, respectively). We conclude that although cerebral artery myocytes express both α1C9/9*/10and α1C9/10VDCC splice variants, α1C9/9*/10is functionally dominant in the control of cerebral artery diameter.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3